█████╗ ██████╗ ██████╗██╗ ██╗██╗██╗ ██╗███████╗
██╔══██╗██╔══██╗██╔════╝██║ ██║██║██║ ██║██╔════╝
███████║██████╔╝██║ ███████║██║██║ ██║█████╗
██╔══██║██╔══██╗██║ ██╔══██║██║╚██╗ ██╔╝██╔══╝
██║ ██║██║ ██║╚██████╗██║ ██║██║ ╚████╔╝ ███████╗
╚═╝ ╚═╝╚═╝ ╚═╝ ╚═════╝╚═╝ ╚═╝╚═╝ ╚═══╝ ╚══════╝
███████╗███████╗██╗ ██╗███████╗██████╗
██╔════╝██╔════╝██║ ██║██╔════╝██╔══██╗
█████╗ █████╗ ██║ ██║█████╗ ██████╔╝
██╔══╝ ██╔══╝ ╚██╗ ██╔╝██╔══╝ ██╔══██╗
██║ ███████╗ ╚████╔╝ ███████╗██║ ██║
╚═╝ ╚══════╝ ╚═══╝ ╚══════╝╚═╝ ╚═╝
Implication Engrams
Paradoxes of the logical implication
When one starts studying logic one is likely to be surprised by the workings of the so-called material implication, p –> q (if p, then q). Unlike the implication used in natural language, which can for example indicate causation, the material implication has a more restricted meaning. The material implication is true unless p is true and q …
See archives for more ...